Hieronder treft u een overzicht en korte beschrijving aan van de PPS projecten die in 2019 met aanwending van de TKI-toeslag tot stand zijn gekomen.

Project partners
Industry (NL): NXP-NL, Almende, AnyWi,
Industry (EU): Frequentis, Infineon, TTTech, Embraer, Ericsson, …
Research organisations: NLR, TUDelft, Bauhaus Luftfahrt, …

Budget en looptijd
Total project budget: ca. 47 M€ (waarvan 12 M€ EU-bijdrage)
– Funded by PPS grant: 290 k€
– Cofunding committed: € – / € – (cash / in-kind)
– Cofunding indicated: € – / ca. 20 M€ (cash / in-kind) 57%
Start, duration: 2020, 3 years
Roadmap(s): AER

Achtergrond
Drones can be used for numerous applications, such as aerial imagery, mapping and surveying, inspection, precision agriculture, law enforcement, people search, first responder emergency missions, etc. Also drones for people transport (“air taxi”, “taxi drones”) are being developed. It is important for Europe to play an important role at the forefront of these developments. This requires the development of small and lightweight, high performance electronic components and system based on these components. The automotive industry has already developed useful technologies and systems that can be used as a basis for a.o. the Detect And Avoid systems required to enable Beyond Visual Line of Sight flight operations.

Doelen
To strengthen the drone industry by using knowledge and experience from the automotive industry:

  • World-class sensors from automotive industry
  • Commercial off-the-shelf data communication technologies and services
  • Design for automotive-style efficient production of components and subsystems

Based on the automotive systems, small, lightweight and high performance systems for drones will be developed. The specific requirements for drones will be taken into account. One of the main use cases will be the demonstration of Beyond Visual Line Of Sight (BVLOS) flight using Detect And Avoid (DAA) system solutions developed in the project. Cerification of the system (components) is taken into account as important enabler for safe operation of drones in BVLOS operations.

Resultaat
Nog niet beschikbaar

Project partners
Industry (NL): Technobis
Other NL partners: DNW
Industry (EU): Leonardo Helicopters
Research organisations: NLR, DLR, POLIMI

Budget en looptijd
Total project budget: ca. 9,3 M€ (waarvan 6,5 M€ EU-bijdrage)
– Funded by PPS grant: 325 k€
– Cofunding indicated: € – / 360 k€ (cash / in-kind) 13%
Start , duration: Q3 2019, 5 years
Roadmap(s): AER

Achtergrond
The Next Gen Civil Tilt Rotor (NGCTR) being developed by Leonardo Helicopters in Clean Sky 2 is a key enabler for achieving the aerospace sector climate and mobility objectives defined by ACARE. The benefits of the tiltrotor configuration in terms of both fuel economy and point-to-point travel time hinge on the speed capability of the aircraft, which is limited primarily by high-speed whirl flutter instability.

Doelen
ATTILA is aimed at the development of an advanced wind tunnel testbed for model-scale aeroelastic whirl flutter testing of the NGCTR concept to demonstrate and understand the stability limitations of the design and de-risk subsequent flight test activities.
The NL industry contribution will be aimed at advanced fiber optic sensor strain measurements coupled with contactless rotating power and data transfer techniques. Wind tunnel testing will take place in the 6×6 LLF operated by DNW, followed by a final test in the NASA TDT.

Resultaat
Nog niet beschikbaar

Project partners
Industry (NL): –
Industry (EU): Airbus, SAFRAN, Leonardo, GE Avio, Siemens, MTU, GKN Sweden, ITP
Research organisations: NLR, ONERA, DLR, CIRA, AIT, ILOT, INCAS

Budget en looptijd
Total project budget: ca. 24 M€ (waarvan 10,4 M€ EU-bijdrage)
– Funded by PPS grant: 350 k€
– Cofunding indicated: € – / 1,8 M€ (cash / in-kind) 13%
Start, duration: 2020, 4 years
Roadmap(s): AER

Achtergrond
Aligning commercial aviation with the general trajectory set by COP21’s target for global temperature increase requires introducing radical technological evolutions well beyond currently projected improvements. This top level ambition is broken down into a number of first level objectives as specified below.

Doelen

  1. The identification of the propulsion architectures and associated aircraft configurations for which HEP brings a benefit compared to the evolutionary developments of conventional technologies by 2035
  2. The closely integrated investigation of the most promising technologies for the various components of an hybrid electric power-train and the identification of major technology enablers and technology gaps to derive research needs to 2035
  3. An anticipation of certification issues and needs for regulatory evolutions for such disruptive technologies
  4. The review of the research infrastructures required for the maturation of HEP, in terms of tools, facilities and demonstrators
  5. The setting-up of an exchange network with aviation key stakeholders from industry, research, airlines and regulators, beyond the project’s partners and with other on-going European projects, in order to build a HEP development roadmap at European level.

Resultaat
Nog niet beschikbaar

Project partners
Industry (NL): ADSE
Other NL-partner: DNW
Industry (EU): Deharde, ALTRAN Deutschland
Research organisations: NLR, UTwente

Budget en looptijd
Total project budget: ca. 5,2 M€ (waavan 3,3 M€ EU-bijdrage)
– Funded by PPS grant: 325 k€
– Cofunding committed: € – / 1,2 M€ (cash / in-kind) 65%
Start , duration: 2019, 3 years
Roadmap(s): AER

Achtergrond
De definitie van de aerodynamische configuratie van de NGCTR (Next Generation Civil Tilt Rotor) moet worden bevestigd door grootschalige windtunneltesten met het doel de hoofdkeuzes te toetsen en bevestigen om daarmee richtlijnen op te stellen en voorstellen te doen voor mogelijke verdere verbeteringen. Het TRINIDAT-project richt zich op het ontwerp van een optimale inlaat voor de NGCTR configuratie, die vervolgens getest gaat worden.

Doelen
TRINIDAT richt zich op het ontwerp van een optimale inlaat uitgaande van een baseline inlaatgeometrie. De inlaat heeft een gecompliceerde vorm met ook nog een by-pass kanaal. Ter plaatse van de motor inlaat (het air intake plane) moet een optimale stroming gerealiseerd worden met een zo homogeen mogelijke instroming en minimale totale drukverliezen. Na het doorrekenen van de baseline geometrie zal een optimalisatie worden uitgevoerd met geavanceerde CFD-methoden. Voor zowel de baseline als het geoptimaliseerde ontwerp zal een full scale windtunnelmodel worden ontworpen en gebouwd en vervolgens worden getest in de DNW-LLF windtunnel. Verder wordt in het project in samenwerking met UTwente en ADSE ook een verkenning gemaakt van het effect van ijsvorming in en op de inlaat en certificatie-aspecten m.b.t. ijsvorming.

Resultaat
Nog niet beschikbaar