Hieronder treft u een overzicht en korte beschrijving aan van de PPS projecten die in 2017 met aanwending van de TKI-toeslag tot stand zijn gekomen.

Project partners
Industry (NL): Fokker Aerostructures
Industry (EU): Airbus, Diehl
Research organisations: NLR, TUDelft, DLR, Fraunhofer

Budget en looptijd
Total project budget: € 16.616.830
– Funded by TKI: € 1.235.000
Duration: 2017-07-01 to 2021-12-31

Achtergrond
To deliver a double-digit fuel burn reduction for the Large Passenger Aircraft (LPA) segment next generation fuselage structure concepts are needed in which cabin, cargo and physical system elements are integrated, Its three main and for STUNNING overarching objectives for future fully equipped Single Aisle Aircraft fuselages compared to the state of the art are:

• Enable a High Rate Production (HRP) of minimum 60 shipsets per month
• Reduce weight by 1tonne
• Reduce recurring cost by 1M€

Doelen
The project will develop, manufacture and deliver a 180° full scale multi-functional integrated thermoplastic fuselage shell, incl. cabin and cargo floor structure and relevant main interior and system elements. The STUNNING team will apply advanced design principles, innovative system architecture, advanced materials and processes to generate high potential solutions for next generation fuselages. Addressed topic are:

  • A 180° full scale multi-functional and integrated TP fuselage shell
  • The potential of TP material and its associated manufacturing processes and welding
  • The integration of multiple system functionalities
  • Industrial Readiness taking in account the requested HRP of minimum 60 shipsets per year
  • Advanced simulation capabilities

Resultaat

  • Coordination of technology development within STUNNING consortium Manufacturing concept selected for thermoplastic (TP) lower fuselage skin, representative for industrial process (aligned with Fokker)
  • Start of Topic Manager role (technical advisory role for JU) for CS2 CfP project EMOTION for innovative consolidation mould for TP skin
  • First results of technology development for virtual (design for) manufacturing of thermoplastic products

Project partners
Industry (NL): Fokker Technologies, DNW
Industry (EU): HIT09
Research organisations: NLR, DLR

Budget en looptijd
Total project budget: € 3.128.750
– Funded by TKI: € 350.000
Duration: 2018-03-01 to 2020-08-31

Achtergrond
De definitie van de aerodynamische configuratie van de Next Generation Civil Tilt Rotor (NGCTR) moet worden bevestigd door grootschalige windtunneltesten met het doel de hoofdkeuzes te toetsen en bevestigen om daarmee richtlijnen op te stellen en voorstellen te doen voor mogelijke verdere verbeteringen. Een eerste aanzet is daartoe gedaan in het EU 6e kaderprogramma met het NICETRIP-project. Om van de reeds opgebouwde kennis optimaal gebruik te maken is een vervolgproject gedefinieerd, dat zich richt op hergebruik van het bestaande NICETRIP model. Binnen het project zullen twee nieuwe staarten worden gerealiseerd; een T-staart en een V-staart waarvan de eigenschappen in een wind tunnel worden gemeten.

Doelen
Het doel is, middels een grootschalige wind tunnel test in DNW-LLF de interferentie van de rotorstroming op beide staarten bij lage snelheden te onderzoeken. Op basis van de resultaten van deze windtunneltest met een aangedreven model (doorontwikkeling NICETRIP-model) zal gezocht worden naar de optimale staart voor de NGCTR, de Next Generation Civil Tilt Rotor. Binnen het project wordt ook gekeken naar de (efficiënte) maakbaarheid van de geoptimaliseerde staart configuratie.

Resultaat
Na ontwerp en aanmaak van de nieuwe NEXTTRIP-staarten zijn deze samengebouwd met de NICETRIP-romp en -vleugel. Begin juni 2019 is een aanvang gemaakt met het meten van de testmatrix. De metingen aan het NEXTTRIP-model met V-staart zijn nagenoeg voltooid. Vanwege een onverwachte gebeurtenis in de tunnel kon de T-staart nog niet gemeten worden.

Project partners
Industry (NL): –
Industry (EU): LFV, DFS, ENAV, Hungarocontrol, Saab, Leonardo, Thales, Indra
Research organisations: NLR, DLR

Budget en looptijd
Total project budget: ca. 17,5 M€ (waarvan 9,5 M€ EU-bijdrage)
– Funded by PPS grant: 108 k€
– Cofunding indicated: € – / 3,3 M€ (cash / in-kind) 42%
Start, duration: 2020, 3 years
Roadmap(s): AER

Achtergrond
The project will look at interaction modes for air traffic controllers in both conventional and Remote Tower environments with a focus on Multiple Remote Tower (MRTO) working positions in a Remote Tower Centre (RTC) with different modules for different types of airport. NLR will cooperate with Swedish Air Navigation Service Provider LFV. Real-time simulations will be carried out on a validation platform operated by LFV (for COOPANS) and NLR will develop air traffic controller support tools for balancing workload between the different MRTO modules in the RTC.

Doelen
The aim of the project is to develop different Human Machine Interface (HMI) solutions for the most important air traffic control tasks in conventional and Remote Tower environments. This means that different applications for conflict detection (on both taxiways and apron), short-term planning (at the working position), hotspot identification (for supervisors), and the use of gap fillers (camera images) will be developed and analysed. Additionally, there will be an option to look at Situational Awareness of air traffic controllers and a possible over-reliance on label information.

Resultaat
Nog niet beschikbaar

Project partners
Industry (NL): –
Other partners (NL): Schiphol
Industry (EU): INDRA, LEONARDO, …
Research organisations: NLR, DLR, SINTEF, …

Budget en looptijd
Total project budget: ca. 25 M€ (waarvan 8,3 M€ EU-bijdrage)
– Funded by PPS grant: 259 k€
– Cofunding indicated: € – / 2.400 k€ (cash / in-kind) 14%
Start, duration: 2020, 3 years
Roadmap(s): AER

Achtergrond
The H2020 SESAR project Total Airport Management focuses on two ‘SESAR Solutions’, emphasizing all of the key airport processes: Integration of airports into the ATM network, and Digital smart airports. NLR participates mainly in the topic Digital smart airports and the following sub-solutions:

  1. CDM Process Enhanced through Integration of Landside Process Outputs
  2. Improved Airport Performance via its Integration in a Multimodal Transport Network
  3. Enhancement of Airside/Landside Performance Management
  4. Extended Turn-round Monitoring

Doelen
The main objective of this project is to validate the integration of European airports in the ATM network and the operational concept for digital smart airports. The main goal of digital smart airports is to develop an operational concept for performance-driven airport operation management for airside, terminal-side as well as landside operations. The main drivers are capacity, efficiency and punctuality (on-time performance).

Resultaat
Nog niet beschikbaar

Project partners
Industry (NL): –
Industry (EU): Leonardo, Honeywell, Thales, Saab, Airbus
ANSP (EU): Eurocontrol, ENAV, LFV, NATS, DSNA
Research organisations: NLR

Budget en looptijd
Total project budget: ca. 28,5 M€ (waarvan 13 M€ EU-bijdrage)
– Funded by PPS grant: 105 k€
– Cofunding indicated: € – / 5,3 M€ (cash / in-kind) 34%
Start, duration: 2020, 3 years
Roadmap(s): AER

Achtergrond
The number of drones flying in EU and Dutch airspace is continuously increasing, with multiple predictions of the total number of drones outnumbering the number of manned aircraft in the next decade. There is a need for drones flying in both controlled and uncontrolled airspace. Drones flying in controlled airspace will be treated in a similar manner to manned aircraft, and will always be flying IFR operations. The characteristics and equipment of the drones however are different than those of manned aircraft, and thus integration is not so straight forward and specific integration concepts need to be investigated. Specific systems and procedures need to be developed, for communication, navigation and surveillance purposes. Ensuring safe separation between drones and other airspace users is a key issue that needs to be tackled; detect and avoid systems are crucial to this successful integration of drones into controlled airspace.

Doelen

  • Contribute with a model for minimum sensor performance for a Detect & Avoid system
  • Develop operational concepts how ATCO will be informed and interact with drone traffic
  • Define an architecture of the different systems needed for this interaction
  • Define communication protocols in case of failure of standard aviation communications

Resultaat
Nog niet beschikbaar

Project partners
Industry (NL): KLM and/or Transavia
Other NL-partners: LVNL
Industry (EU): Thales/ACSS, Airbus and/or Honeywell
Research organisations: NLR

Budget en looptijd
Total project budget: 6.5 M€ (EU-contribution ca. 4 M€)
– Funded by PPS grant: 240 k€
– Cofunding indicated: – / 2,100 k€ (cash / in-kind) 84%
Start, duration: 2020, 2,5 years
Roadmap(s): AER

Achtergrond
Interval Management (IM) is a solution that improves the precision and consistency of inter-aircraft spacing. The precise spacing allows to simultaneously achieve high arrival capacity and predictability while enabling aircraft to operate on fixed PBN routes in the TMA (aka RNAV Transitions) with a fixed profile descent (FPD), which enable more continuous descents, resulting in decreased fuel burn and noise impact. IM also supports steps towards less complex TMA operations, strategic de-confliction of inbound and outbound traffic, and trajectory-based operations (TBO).
In summary, IM is an essential building block towards less complex and more sustainable operations in the Schiphol TMA.

Doelen
The objectives of the Interval Management Very Large Demonstration (VLD) are:

  • Develop procedures for RNAV Transitions + FPD + IM, train and execute these procedures
  • Develop and certify FIM Equipment for installation in a TBD aircraft type
  • Get experience with installing FIM equipment
  • Get operational experience (feedback by controllers, flight crews, procedure designers) with IM
    operations on RNAV Transitions
  • Get operational data on the spacing performance, fuel efficiency, environmental impact, and predictability of IM operations

Resultaat
Nog niet beschikbaar

Project partners
Industry (NL): Bradford Engineering
Industry (EU): Airbus Defence and Space, Diabatix, AVS, …
Research organisations: NLR, European organization for nuclear research

Budget en looptijd
Total project budget: € 3.727.383
– Funded by TKI: € 120.000
Duration: 2019-01-01 to 2021-12-31

Achtergrond
The satellite telecommunications industry is currently undergoing significant evolutions. Future commination satellites need to accommodate a rapidly growing demand in data transfer, combined with more flexibility. For example, there is a strong
need for Very High Throughput Satellites capable of delivering up to Tb/s over wide coverage areas. This is only possible when an active phased array antenna is used. However, cooling of active antennas requires the use of a highly efficient thermal control system because it has many heat sources (from hundreds to several thousands), very high local heat fluxes (up to 200W/cm² at amplifier interface), high overall dissipation (around 13 kW), and an isothermal requirements on the amplifier chain. These conditions are impossible to solve with current state-of-the-art thermal control solutions (e.g. heat pipes or loop heat pipes), but requires a two-phase mechanically pumped fluid loop (MPL). In a MPL, a pump circulates a fluid which evaporates when it absorbs the waste heat from the active antenna.

Doelen
This project aims to change that. The objective of this project is to perform research on a two-phase MPL for an active antenna, and to build a demonstrator with a Technical Readiness Level (TRL) of 6. This two-phase MPL will be a key building block in the next generation telecommunications satellites.

Resultaat

  • Na ontvangst van de specificaties van Airbus voor de actieve antenne is er een voorstel gedaan voor het ontwerp van een gepompt koel systeem. Hiervoor zijn meerdere analyses uitgevoerd, waarbij uiteindelijk voor ammonia als koelmedium is gekozen.
  • Er is een grote voorkeur voor gebruik van aluminium echter is de compatibiliteit en de verwerking van aluminium (lassterkte) nog een punt van zorg. Hiervoor zijn testen opgezet die deze punten van zorg gaan onderzoeken.
  • In 2020 wordt het finale ontwerp gemaakt en uiteindelijk gebouwd plus getest.